
Beating the System:
Code Generation Part 2
by Dave Jewell

As promised last month, we’re
going to continue our explora-

tion of Delphi code generation with
a look at try-finally blocks, excep-
tion handling and nested proce-
dure calls. Having got a feel for the
amount of code generated by these
different language features, you’ll
be in a position to write leaner,
more efficient apps.

Try-Finally Blocks
What’s the magic that causes the
finally clause of a try-finally
block to be executed no matter
what? To answer that question,
feast your eyes on Listing 1 and all
will be revealed. In order to make
things easier to understand, I’ve
highlighted the most interesting
parts in red. The highlighted parts
of the code correspond to the
control structures that the com-
piler inserts into your code in or-
der to implement the try-finally
functionality.

Right at the top of the listing, you
can see a six-byte block which I’ve
referred to as a descriptor block.
This is a special case of the more
general descriptor block which the
compiler uses to implement try-
except blocks, as we shall see later.
Whenever you use try-finally in
your code, the first two bytes of the
descriptor block are always zero
and the other four bytes represent
a far pointer into your code. This
points to the beginning of the fi-
nally clause. In this particular ex-
ample, the finally clause consists
of one simple call to FreeMem. Look-
ing at the descriptor block, we can
see that the pointer value is
$4052:019A which does indeed
point to the call to FreeMem.

When the try-finally block is
entered (location $176), the com-
piler generates code which pushes
a far pointer to the descriptor
block onto the stack. The current
procedure’s stack-frame pointer

(BP) is also pushed onto the stack.
Finally, (ha-ha!) a special global
variable ExceptList is pushed onto
the stack and ExceptList is set to
the value of the current stack
pointer. The ExceptList variable is
shown as being at location $9A6 in
Listing 1.

Having done all that, the house-
keeping code has effectively saved
the ‘context’ of the running proce-
dure so that its finally block can
be called if and when an exception
occurs. If an exception does take

place, the finally code gets called
from deep inside the run-time li-
brary. I won’t explain the operation
of this code here, because it’s very
lengthy, complex, and the code is
already described in the file
SOURCE\RTL\SYS\EXCP.ASM. Suffice
to say that if an exception occurs,
the code at location $19A (the start
of our finally clause) is called as a
far procedure from the library
code.

This immediately presents a
problem: how does the run-time

procedure TForm1.Button1Click(Sender: TObject);
var
 APointer: Pointer;
 AnInteger, ADividend: Integer;
begin
 ADividend := 0;
 GetMem (APointer, 1024); { allocate 1K of memory }
 try
 AnInteger := 10 div ADividend; { this generates an error }
 finally
 FreeMem(APointer, 1024); { execution resumes here, despite error }
 end;
end;

014F 00 00 9A 01 52 40 ; descriptor block for try-finally

0155 55 push bp
0156 89 E5 mov bp,sp
0158 B8 0008 mov ax,8 ; stack probe
015B 9A 67122686 call far ptr sub_0067
0160 83 EC 08 sub sp,8
0163 31 C0 xor ax,ax ; ADividend := 0;
0165 89 46 F8 mov [bp-8],ax
0168 68 0400 push 400h ; GetMem
016B 9A 671223C4 call GetMem
0170 89 46 FC mov [bp-4],ax ; result in APointer
0173 89 56 FE mov [bp-2],dx
0176 B8 014F mov ax,14Fh ; try . . .
0179 0E push cs
017A 50 push ax
017B 55 push bp
017C FF 36 09A6 push word ptr ds:[9A6h]
0180 89 26 09A6 mov word ptr ds:[9A6h],sp
0184 B8 000A mov ax,0Ah ; AnInteger := 10 div ADividend
0187 99 cwd
0188 F7 7E F8 idiv word ptr [bp-8]
018B 89 46 FA mov [bp-6],ax
018E 8F 06 09A6 pop word ptr ds:[9A6h]
0192 83 C4 06 add sp,6
0195 B8 01A9 mov ax,1A9h v
0198 0E push cs
0199 50 push ax
019A FF 76 FE push word ptr [bp-2] ; finally block
019D FF 76 FC push word ptr [bp-4]
01A0 68 0400 push 400h
01A3 9A 671223DE call FreeMem
01A8 CB retf
01A9 C9 leave
01AA CA 0008 retf 8

➤ Listing 1

32 The Delphi Magazine Issue 17

library code call a chunk of another
routine as if it were a separate,
stand-alone procedure? This is
where things get a bit sneaky. As
you’ll see from the code listing, the
compiler inserts a far return (RETF)
instruction at location $1A8, specifi-
cally so that the run-time library
can make a far call to the finally
clause in the event of an exception.
But this means that if an exception
doesn’t occur deeply bad things
are going to happen when this RETF
instruction is encountered! In or-
der to get around this, the cleanup
code at location $18E onwards
must not only restore the state of
the ExceptList and pop the three
words that were originally pushed
onto the stack, but it also has to
push the far address of the exit
point from the try-finally block.
Thus, when the bogus RETF state-
ment gets executed, the processor
restarts execution at location $1A9.
You’ll notice, incidentally, that the
eight bytes of parameters con-
sumed by this routine aren’t
popped off the stack until the ‘real’
return address is encountered.
This is important because the

exception-handling code in the
run-time library wants a simple far
routine that it can call. It has no
knowledge of the number of bytes
of parameters used by the target
code.

This is a cunning mechanism
and, because it’s stack based, it
means that try-finally and try-
except blocks are inherently ‘nes-
table’. As the code winds its way
out of a deeply nested chunk of
code, the saved context informa-
tion is successively popped off the
stack until the status quo has been
restored.

Try-Except Blocks
As mentioned above, try-finally
blocks are a specific case of the
more general try-except mecha-
nism. To see how this works, take
a look at Listing 2. Here, you can see
a simple exception handler de-
signed to catch EConvertError ex-
ceptions which might be thrown
while executing the StrToInt rou-
tine. You’ve almost certainly writ-
ten code like this yourself, to cater
for those times when an end-user
needs to enter some numeric

value. In order to keep the code
listing as short as possible, this
particular error handler just calls
MessageBeep, but you’d typically
call MessageDlg or something
similar.

Notice that this time round, the
descriptor block has grown to ten
bytes. Why’s this? The reason is
that, generally speaking, a descrip-
tor block consists of a 16-bit count,
followed by a list of exceptions and
the addresses to which the code
should jump if one of those excep-
tions is triggered. The try-finally
descriptor is the degenerate case:
the count word is zero and the only
pointer is the address of the fi-
nally clause. In the case of Listing
2, we’ve specified only one excep-
tion, EConvertError, and therefore
the count word is set to one. This
is followed by a 32-bit pointer to
the RTTI (run-time type informa-
tion) for EConvertError, and then by
a far pointer to the except clause
that you’ve written: in this case at
address $0198.

If you’d written a ‘blind’ excep-
tion handler (in other words, if you
hadn’t specified an exception
type), then the RTTI pointer in the
descriptor block would have
pointed at the type information for
Exception itself, which of course is
the base class for all exception
types. This would have meant that
the exception handler would have
been triggered whatever type of ex-
ception occurred. As you’ve prob-
ably guessed, the run-time library’s
exception handling code steps
through the list of exception types
described in the descriptor block
trying to find the best match with
the exception that’s actually been
raised. If the descriptor block only
contains an entry for Exception,
then a match will always take place.

Just as with the try-finally ex-
ample, the procedure starts off by
pushing a far pointer to the de-
scriptor block together with the
routine’s stack frame. The current
stack pointer is added to the excep-
tion list as previously. However,
when the ‘normal’ part of the try-
except block terminates, it simply
fixes up the stack, unwinds the ex-
ception list and then branches
around the exception handling

procedure TForm1.Button1Click(Sender: TObject);
var count: Integer;
begin
 try
 count := StrToInt (Edit1.Text);
 except
 on EConvertError do MessageBeep (0);
 end
end;

0156 01 00 AE 02 6B 68 98 01 6B 40 ; descriptor block for try-except

0160 C8 0102 00 enter 102h,0
0164 B8 0156 mov ax,156h
0167 0E push cs
0168 50 push ax
0169 55 push bp
016A FF 36 09E0 push ExceptList
016E 89 26 09E0 mov ExceptList,sp
0172 8D BE FEFE lea di,[bp-102h]
0176 16 push ss
0177 57 push di
0178 C4 7E 06 les di,dword ptr [bp+6]
017B 26: C4 BD 017C les di,dword ptr es:data_0047e[di]
0180 06 push es
0181 57 push di
0182 9A 4F5B1BD4 call TControl.GetText
0187 9A 686B06EA call StrToInt
018C 89 46 FE mov [bp-2],ax
018F 8F 06 09E0 pop ExceptList
0193 83 C4 06 add sp,6
0196 EB 0C jmp 01A4 ; no exception, so skip exception block
0198 6A 00 push 0 ; start of the exception block
019A 9A FFFF0006 call MessageBeep
019F 9A 686B2901 call DoneExcept
01A4 C9 leave
01A5 CA 0008 retf 8

➤ Listing 2

January 1997 The Delphi Magazine 33

block. There’s no need to play
funny tricks with the stack because
finally clauses are called from the
run-time library, whereas except
clauses are jumped into from the
run-time library.

Finally, while still on the subject
of exception handling, take a look
at the code in Listing 3. This dem-
onstrates a typical use of the Raise
statement in conjunction with a
call to FmtLoadStr. I discussed the
‘Format-series’ routines last
month. The important thing here is
the way in which an exception ob-
ject is generated, passing a pointer
to the RTTI information to the class
and calling the constructor for that
routine. The object address, re-
turned from the constructor, is
then passed to the RaiseExcept rou-
tine in the run-time library. Again,
when this is combined with the
open array usage of FmtLoadStr, a
surprising amount of code gets
generated by a single line of Object
Pascal. If you routinely use this
type of construction inside your
application, you’ll get a consider-
able reduction in code size by lo-
calising the exception creation and
raising mechanism into a single
procedure.

Nested Procedures
Nested procedures are a useful
(and in my experience under-used)
feature of Pascal. They allow you to
chop up a large routine into man-
ageable pieces whilst keeping it
clear who can call what! At the
same time, nested procedures can
substantially reduce code size by
effectively allowing you to com-
mon-up chunks of code which
would otherwise have to be dupli-
cated.

However, if used injudiciously,
nested procedures can increase
code size and make a program less
efficient because of the way in
which a nested procedure gets ac-
cess to the parameters and vari-
ables of its parent. As you’ll no
doubt appreciate, methods of a
class have a hidden 32-bit parame-
ter which is the Self pointer: a
pointer to the current dynamically
allocated instance of the class. In
the same way, local procedures
also have a hidden parameter, but

in this case its a pointer to the stack
frame of the parent.

Listing 4 should make this
clearer. The somewhat contrived

(and totally useless) FormCreate
routine shown here does nothing
except call a local procedure called
SwapXY which swaps a couple of

procedure TForm1.FormCreate(Sender: TObject);
begin
 raise Exception.Create (FmtLoadStr (61440, [’Screwdriver’, ’Squirrel’]));
end;

0145 C8 0110 00 enter 110h,0
0149 8D BE FEF0 lea di,cs:[0FEF0h][bp]
014D 16 push ss
014E 57 push di
014F 68 F000 push 0F000h
0152 B8 0130 mov ax,130h ; ’Screwdriver’
0155 8C CA mov dx,cs
0157 89 46 F0 mov [bp-10h],ax
015A 89 56 F2 mov [bp-0Eh],dx
015D C6 46 F4 04 mov byte ptr [bp-0Ch],4
0161 B8 013C mov ax,13Ch ; ’Squirrel’
0164 8C CA mov dx,cs
0166 89 46 F8 mov [bp-8],ax
0169 89 56 FA mov [bp-6],dx
016C C6 46 FC 04 mov byte ptr [bp-4],4
0170 8D 7E F0 lea di,[bp-10h]
0173 16 push ss
0174 57 push di
0175 6A 01 push 1
0177 9A 660B070F call FmtLoadStr
017C B0 01 mov al,1
017E 50 push ax
017F B8 0022 mov ax,22h ; push RTTI info for Exception
0182 BA 660B mov dx,660Bh
0185 52 push dx
0186 50 push ax
0187 9A 660B119B call Exception.Create ; create exception object
018C 52 push dx
018D 50 push ax
018E 9A 660B2815 call RaiseExcept ; and raise it
0193 C9 leave
0194 CA 0008 retf 8

➤ Listing 3

procedure TForm1.FormCreate(Sender: TObject);
var
 x, y: Integer;
 procedure SwapXY;
 var
 temp: Integer;
 begin
 temp := x;
 x := y;
 y := temp;
 end;
begin
 SwapXY;
end;
end.

SwapXY:
0130 C8 0002 00 enter 2,0
0134 8B 7E 04 mov di,[bp+4]
0137 36: 8B 45 FE mov ax,ss:[di-2]
013B 89 46 FE mov [bp-2],ax
013E 36: 8B 45 FC mov ax,ss:[di-4]
0142 36: 89 45 FE mov ss:[di-2],ax
0146 8B 46 FE mov ax,[bp-2]
0149 36: 89 45 FC mov ss:[di-4],ax
014D C9 leave
014E C2 0002 retn 2
0151 C8 0004 00 enter 4,0
0155 55 push bp
0156 E8 FFD7 call SwapXY
0159 C9 leave
015A CA 0008 retf 8

➤ Listing 4

34 The Delphi Magazine Issue 17

variables in the parent procedure
and then exits gracefully.

Notice that in the call to SwapXY,
the BP parameter gets pushed onto
the stack even though the routine
isn’t declared as taking any pa-
rameters: this is the undocu-
mented frame pointer I mentioned.
By using positive offsets from this
frame pointer, the nested subrou-
tine can access the parameters (if
any) of its parent routine. By using

negative offsets, it can get to the
local variables.

Thus, in this simple example, the
SwapXY routine loads up the DI reg-
ister with the frame pointer and
then uses stack-relative address-
ing to access the x and y local vari-
ables. In this case, the routine is so
trivially simple that the compiler
can do the whole thing without
having to reload the DI register, but
in a more real-life example, the

code would typically have to set up
DI several times within the proce-
dure. This makes the code slower
and larger than it would otherwise
be, but against that you have to
balance the potential reduction in
code size that can be obtained by
de-duplicating code in a nested
procedure. This is why program-
ming is an art, not an exact science!

Conclusions
From the last couple of months
worth of deliberations I’ve come up
with a set of guidelines for putting
your code on a diet – and making it
run faster too. See the box at left.

Next time round, by popular
demand, I’ll look at more ways in
which you can interact with the
Windows 95/NT Explorer, using the
various COM interfaces that
Microsoft provide for the purpose.

Dave Jewell is a freelance consult-
ant/programmer and technical
journalist specialising in system-
level Windows and DOS work. He
is the author of Instant Delphi
Programming published by Wrox
Press. Contact Dave as DaveJewell
@msn.com or DSJewell@aol.com
or as 102354,1572 on CompuServe

Slimming Techniques For Delphi Developers

➤ Get-Set (or Read-Write) Routines
Design your Get-Set routines to be small and fast: in many cases the Get
routine should just map onto the read of a specific private variable.
Where you make extensive use of Get-Set routines in the VCL frame-
work, be mindful of the code that’s being generated. If you have a case
statement with multiple clauses which do something like this:
Bitmap.Canvas.Pen.Color := <whatever>

then just set up a local TColor variable in each branch of the case
statement and make the actual assignment to the pen once only.

➤ With Statements
Use with statements to make life easier for the compiler and reduce the
amount of typing you’ve got to do. However, bear in mind that for very
simple routines a with statement can actually increase the size of the
code generated.

➤ Open Arrays
A great idea, but use with caution. If you make heavy use of open arrays
to convert integers into strings and vice versa, you’ll get the job done
a lot more efficiently with StrToInt and IntToStr. Also, don’t use fancy
calls to Format when you want to concatenate a few strings together:
the standard string concatenation routines are a lot more economical
in terms of code size.

➤ Try-Finally And Try-Except Blocks
Again, a great idea, but don’t bother if you’re protecting code that can’t
possibly throw an exception anyway! If the code you’re protecting can
throw exceptions, then be sure that your exception handler can ‘catch’
the type of exception that’s being thrown, otherwise you’re just
needlessly bloating your code.

➤ Raising Exceptions
If you raise exceptions at many places in your code, consider doing the
raise in just one routine, passing it the string resource ID (for example)
of an error message to differentiate between error conditions from the
user’s point of view. A simple technique like this can save a lot of code.

➤ Nested Procedures
Sometimes a Pascal programmer will deliberately duplicate a lot of
code in different parts of the same routine specifically to avoid the
humiliation of using a goto statement! With nested procedures, you can
avoid the duplication and retain your street-cred! But if you have nested
procedures inside a very time-critical chunk of code such as a numeri-
cal analysis routine, then consider passing parameters to local proce-
dures instead of relying on the implicit scoping rules. This is generally
a lot faster than going through the frame pointer, especially if you nest
more than one level.

January 1997 The Delphi Magazine 35

	Try-Finally Blocks
	Try-Except Blocks
	Nested Procedures
	Slimming Techniques For Delphi Developers
	Conclusions

